Generically, Arnold-Liouville Systems Cannot be Bi-Hamiltonian
نویسندگان
چکیده
We state and prove that a certain class of smooth functions said to be BH-separable is meagre subset for the Fr\'echet topology. Because these are only admissible Hamiltonians Arnold-Liouville systems admitting bi-Hamiltonian structure, we get that, generically, cannot bi-Hamiltonian. At end paper, determine, both as concrete representation our general result an illustrative list, which polynomial $H$ form $H(x,y)=xy+ax^3+bx^2y+cxy^2+dy^3$ BH-separable.
منابع مشابه
Quantum Bi-Hamiltonian Systems
We define quantum bi-Hamiltonian systems, by analogy with the classical case, as derivations in operator algebras which are inner derivations with respect to two compatible associative structures. We find such structures by means of the associative version of Nijenhuis tensors. Explicit examples, e.g. for the harmonic oscillator, are given.
متن کاملBi–Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
We discuss from a bi-Hamiltonian point of view the Hamilton–Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi–bi– Hamiltonian formulation of Pfaffian type. This property allows us to straightforwardly recover a set of separation variables for the corresponding Hamilton–Jacobi equation.
متن کاملThe nonabelian Liouville-Arnold integrability
There is proposed a symplectic theory approach to studying integrable via the nonabelian Liouville-Arnold theorem Hamiltonian systems on canonically symplectic phase spaces. A method of algebraic-analytical constructing the corresponding integral submanifold imbedding mappings is devised.
متن کاملCompletely Integrable Bi-hamiltonian Systems
We study the geometry of completely integrable bi-Hamiltonian systems, and in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the af...
متن کاملSingularities of Bi-Hamiltonian Systems
We study the relationship between singularities of bi-Hamiltonian systems and algebraic properties of compatible Poisson brackets. As the main tool, we introduce the notion of linearization of a Poisson pencil. From the algebraic viewpoint, a linearized Poisson pencil can be understood as a Lie algebra with a fixed 2-cocycle. In terms of such linearizations, we give a criterion for non-degenera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry Integrability and Geometry-methods and Applications
سال: 2021
ISSN: ['1815-0659']
DOI: https://doi.org/10.3842/sigma.2021.096